`(1//2)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{2}) / 3\), we will follow these steps: ### Step 1: Understand the division of fractions The division of a fraction by a whole number can be rewritten using the formula: \[ \frac{1}{a} \div b = \frac{1}{a} \times \frac{1}{b} \] In this case, \(a = 2\) and \(b = 3\). ### Step 2: Rewrite the expression Using the formula, we can rewrite the expression: \[ \frac{1}{2} \div 3 = \frac{1}{2} \times \frac{1}{3} \] ### Step 3: Multiply the fractions Now, we multiply the two fractions: \[ \frac{1}{2} \times \frac{1}{3} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6} \] ### Step 4: Conclusion Thus, the final answer is: \[ \frac{1}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

1/2+1/3xx1/3-:2/3-1/2xx[1/3+{1/2-(2/3+1/2+1/3)}]

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

Simplify : (1/4)^(-2)+\ (1/2)^(-2)+(1/3)^(-2)

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

4 1/3-2 1/3= (a) 2 1/3 (b) 2 (c) 3 1/3 (d) 1/2

The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))... upto 10th term is

Write each of the following in exponential form : (i)(3/2)^(-1)×\ (3/2)^(-1)×\ (3/2)^(-1)×\ (3/2)^(-1) (ii)(2/5)^(-2)×\ (2/5)^(-2)×\ (2/5)^(-2)

Locate the points: (1, 1), (1, 2), (1, 3), (1, 4) (2, 1), (2, 2), (2, 3), (2, 4) (1, 3), (2, 3), (3, 3), (4, 3) (1, 4), (2, 4), (3, 4), (4, 4)