Home
Class 12
MATHS
{:("Column A", " ","Column B"),(s...

`{:("Column A", " ","Column B"),(sqrt(3) + sqrt(5)," ",sqrt(8)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will compare the values in Column A and Column B step by step. ### Step 1: Calculate the value of Column A Column A is given as \( \sqrt{3} + \sqrt{5} \). 1. Find the approximate values of \( \sqrt{3} \) and \( \sqrt{5} \): - \( \sqrt{3} \approx 1.732 \) - \( \sqrt{5} \approx 2.236 \) 2. Add these values together: \[ \sqrt{3} + \sqrt{5} \approx 1.732 + 2.236 = 3.968 \] ### Step 2: Calculate the value of Column B Column B is given as \( \sqrt{8} \). 1. Simplify \( \sqrt{8} \): \[ \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2 \sqrt{2} \] 2. Find the approximate value of \( \sqrt{2} \): - \( \sqrt{2} \approx 1.414 \) 3. Multiply to find \( \sqrt{8} \): \[ 2 \sqrt{2} \approx 2 \times 1.414 = 2.828 \] ### Step 3: Compare the values of Column A and Column B Now we have: - Column A: \( \sqrt{3} + \sqrt{5} \approx 3.968 \) - Column B: \( \sqrt{8} \approx 2.828 \) ### Conclusion Since \( 3.968 > 2.828 \), we conclude that: - Column A is greater than Column B. Thus, the answer is that Column A is larger.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A", " ","Column B"),((sqrt(2))/(3)," ",2//5):}

{:("Column A"," ","Column B"),(sqrt(12.5)+sqrt(12.5),,sqrt(25)):}

{:("Column A"," ","Column B"),((((sqrt7)^(x))^(2))/((sqrt7)^(11)),,(7^(x))/(7^(13))):}

{:("Column A"," ","Column B"),(1/5 + 1/3 + 1/8," ", 1/8 + 1/5 + 1/4):}

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

(sqrt(2)+sqrt(3))times(sqrt(3)+sqrt(8))

Divide 8sqrt(15) and 2sqrt(3) .

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)