Home
Class 12
MATHS
{:("Column A",x = 3.636 cdot 10^(16), "C...

`{:("Column A",x = 3.636 cdot 10^(16), "Column B"),((x + 1)/(x - 1),,(x - 1)/(x+1)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the values in Column A and Column B based on the given value of \( x = 3.636 \times 10^{6} \). ### Step 1: Define the expressions for Column A and Column B - **Column A**: \( \frac{x + 1}{x - 1} \) - **Column B**: \( \frac{x - 1}{x + 1} \) ### Step 2: Substitute the value of \( x \) Substituting \( x = 3.636 \times 10^{6} \) into the expressions: - Column A: \[ \frac{3.636 \times 10^{6} + 1}{3.636 \times 10^{6} - 1} \] - Column B: \[ \frac{3.636 \times 10^{6} - 1}{3.636 \times 10^{6} + 1} \] ### Step 3: Analyze Column A For Column A: - The numerator \( x + 1 = 3.636 \times 10^{6} + 1 \) is greater than the denominator \( x - 1 = 3.636 \times 10^{6} - 1 \) because adding 1 to a positive number makes it larger, and subtracting 1 from a positive number makes it smaller. - Therefore, \( \frac{x + 1}{x - 1} > 1 \). ### Step 4: Analyze Column B For Column B: - The numerator \( x - 1 = 3.636 \times 10^{6} - 1 \) is less than the denominator \( x + 1 = 3.636 \times 10^{6} + 1 \) for the same reasons as above. - Therefore, \( \frac{x - 1}{x + 1} < 1 \). ### Step 5: Compare the two columns From our analysis: - Column A is greater than 1. - Column B is less than 1. Since Column A is greater than 1 and Column B is less than 1, it follows that: \[ \text{Column A} > \text{Column B} \] ### Conclusion Thus, we conclude that Column A is larger than Column B. **Final Answer**: Column A is larger. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}

{:("Column A",x != 3 and x != 6,"Column B"),((2x^2 - 72)/(x - 6),,(2x^2 - 18)/(x - 3)):}

{:("Column A",x = 1/(1 + 1/(1 + 1/2)),"Column B"),(x,,1):}

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A",0 < x < y,"Column B"),(7^(1/x - 1/y),,7^(x - y)):}

{:("Column A",x ge 1, "Column B"),(x^(10),,x^(100)):}

{:("Column A",x = 1//y,"Column B"),(x +1 + 1//x,,y + 1 + 1//y):}

{:("Column A",0 < x < y,"Column B"),(x + 1//x,,y + 1//y):}

{:("Column A"," ","Column B"),(((2x - 10)(2x + 11))/(4),,(x - 11)(x + 11)):}

{:("Column A", x > 1,"Column B"),(1//x," ",1/(x - 1)):}