Home
Class 12
MATHS
If 2 < x < 5 and 3 < y < 5, which of the...

If `2 < x < 5 and 3 < y < 5`, which of the following best describes `x - y`?

A

`-3 lt x - y lt 2`

B

`-3 lt x - y lt 5`

C

`0 lt x - y lt 5`

D

`3 lt x - y lt 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the range of \( x - y \) given the inequalities \( 2 < x < 5 \) and \( 3 < y < 5 \), we will follow these steps: ### Step 1: Identify the minimum value of \( x - y \) To find the minimum value of \( x - y \), we need to minimize \( x \) and maximize \( y \): - The minimum value of \( x \) is just above 2 (let's denote it as \( x \to 2^+ \)). - The maximum value of \( y \) is just below 5 (let's denote it as \( y \to 5^- \)). Thus, we can calculate: \[ x - y \text{ (minimum)} = (2^+) - (5^-) \approx 2 - 5 = -3 \] ### Step 2: Identify the maximum value of \( x - y \) To find the maximum value of \( x - y \), we need to maximize \( x \) and minimize \( y \): - The maximum value of \( x \) is just below 5 (let's denote it as \( x \to 5^- \)). - The minimum value of \( y \) is just above 3 (let's denote it as \( y \to 3^+ \)). Thus, we can calculate: \[ x - y \text{ (maximum)} = (5^-) - (3^+) \approx 5 - 3 = 2 \] ### Step 3: Combine the results From the calculations above, we have: - The minimum value of \( x - y \) is slightly greater than \(-3\). - The maximum value of \( x - y \) is slightly less than \(2\). Therefore, we can express the range of \( x - y \) as: \[ -3 < x - y < 2 \] ### Final Answer The best description of \( x - y \) is: \[ -3 < x - y < 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P and Q are two points on the circle x^2 + y^2 - 4x + 6y-3=0 which are farthest and nearest respectively from the point (7, 2) then. (A) P-=(2-2sqrt(2), -3-2sqrt(2)) (B) Q-= (2+2sqrt(2), -3 + 2 sqrt(2)) (C) P-= (2+2sqrt(2), -3 + 2 sqrt(2)) (D) Q-= (2-2sqrt(2), -3 + 2 sqrt(2))

If a circle passes through the point (a, b) and cuts the circle x^2 + y^2 = 4 orthogonally, then the locus of its centre is (a) 2ax+2by-(a^(2)+b^(2)+4)=0 (b) 2ax+2by-(a^(2)-b^(2)+k^(2))=0 (c) x^(2)+y^(2)-3ax-4by+(a^(2)+b^(2)-k^(2))=0 (d) x^(2)+y^(2)-2ax-3by+(a^(2)-b^(2)-k^(2))=0

Geometric mean of 2, 2^(2), 2^(3),…,2^(n) is

Find the mode for the following series: 2.5, 2.3 ,2.2, 2.2, 2.4, 2.7, 2.7, 2.5, 2.3, 2.2, 2.6, 2.2

Find the mode for the following series: 2.5, 2.3, 2.2, 2.4, 2.7, 2.7, 2.5, 2.3, 2.2, 2.6, 2.2

In a DeltaABC,2asin^(2)C/2+2csin^(2)A/2=

In a quadrilateral if sin(A+B)/2cos(A-B)/2+sin(c+D)/2cos(c-D)/2=2, then cosA/2cosB/2+cosA/2cosc/2+cosA/2 cosD/2+cosB/2 cosC/2+cosB/2 cosD/2+cosC/2 cosD/2=

If y=cos^2[tan^(-1)(sin[cot^(-1)x])], then (dy)/(dx) is (a) (-2x)/((x^2+2)^2) (b) (2x)/((x^2+2)^2) (c) 2/((x^2+2)^2) (d) (-2)/((x^2+2)^2)

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .