Home
Class 12
MATHS
{:("Column A",a > b > 0,"Column B),((a ...

`{:("Column A",a > b > 0,"Column B),((a - b)/(a + b),,(a^2 - b^2)/(a^2 + b^2)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the expressions in Column A and Column B given that \( a > b > 0 \). ### Step-by-Step Solution: 1. **Identify the Expressions**: - Column A: \( \frac{a - b}{a + b} \) - Column B: \( \frac{a^2 - b^2}{a^2 + b^2} \) 2. **Simplify Column A**: - We can rewrite Column A's expression: \[ \frac{a - b}{a + b} = \frac{(a - b)(a + b)}{(a + b)(a + b)} = \frac{a^2 - b^2}{(a + b)^2} \] - Here, we used the identity \( a^2 - b^2 = (a - b)(a + b) \). 3. **Rewrite Column B**: - Column B is already given as: \[ \frac{a^2 - b^2}{a^2 + b^2} \] 4. **Compare the Two Columns**: - Now we have: - Column A: \( \frac{a^2 - b^2}{(a + b)^2} \) - Column B: \( \frac{a^2 - b^2}{a^2 + b^2} \) 5. **Analyze the Numerators**: - Both columns have the same numerator \( a^2 - b^2 \). Since \( a > b \), \( a^2 - b^2 > 0 \). 6. **Compare the Denominators**: - For Column A, the denominator is \( (a + b)^2 \). - For Column B, the denominator is \( a^2 + b^2 \). - Since \( a \) and \( b \) are both positive, we know that \( (a + b)^2 > a^2 + b^2 \) because: \[ (a + b)^2 = a^2 + 2ab + b^2 > a^2 + b^2 \] - Thus, \( (a + b)^2 > a^2 + b^2 \). 7. **Conclusion**: - Since both columns have the same positive numerator and Column A has a larger denominator than Column B, it follows that: \[ \frac{a^2 - b^2}{(a + b)^2} < \frac{a^2 - b^2}{a^2 + b^2} \] - Therefore, Column B is larger than Column A. ### Final Answer: - **Column B is larger**.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",a = 49"," b = 59,"Column B"),((a^2 - b^2)/(a - b),,(a^2 - b^2)/(a + b)):}

{:("Column A",a^2 + 7a < 0,"Column B),(a,,0):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",1 < p < 3,"Column B),(p^2,,2p):}

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A"," ","Column B"),((-3)^2,,(-2)^3):}

{:("Column A"," ", "Column B"),(/_A,,72^@):}

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

{:("Column A", y > 0,"Column B"),(y^3 + y^4," ", y^4 - 2y^2):}