Home
Class 12
MATHS
If z != 0 and yz != 1 then 1/(y - 1/z) =...

If `z != 0` and `yz != 1` then `1/(y - 1/z)` =

A

`(yz)/(zy - 1)`

B

`(y - z)/(z)`

C

`(yz - z)/(z - 1)`

D

`z/(zy - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{y - \frac{1}{z}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1}{y - \frac{1}{z}} \] ### Step 2: Find a common denominator To simplify the expression in the denominator, we need to find a common denominator for \( y \) and \( \frac{1}{z} \). The common denominator is \( z \). Thus, we can rewrite \( y \) as: \[ y = \frac{y \cdot z}{z} \] Now, substituting this back into the expression gives us: \[ \frac{1}{\frac{y \cdot z}{z} - \frac{1}{z}} \] ### Step 3: Combine the fractions in the denominator Now, we can combine the fractions in the denominator: \[ \frac{1}{\frac{yz - 1}{z}} \] ### Step 4: Simplify the expression Now, we can simplify the expression by multiplying by the reciprocal of the denominator: \[ \frac{1}{\frac{yz - 1}{z}} = \frac{z}{yz - 1} \] ### Final Answer Thus, the final simplified expression is: \[ \frac{z}{yz - 1} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessarily.

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

If x , y , z are not all zero such that a x+y+z=0 , x+b y+z=0 , x+y+c z=0 then prove that 1/(1-a)+1/(1-b)+1/(1-c)=1

If z > 0 ? (1) (z + 1)(z)(z - 1) (2) |z| < 1