Home
Class 12
MATHS
{:("Column A"," ","Column B"),(2 xx...

`{:("Column A"," ","Column B"),(2 xx 10^1 + 3 xx 10^(0) +4 xx 10^(-1) + 5 xx 10^(-2),,1 xx 10^(-3) + 2 xx 10^(-2) xx 10^(-2) + 3 xx 10^(-1) + 4 xx 10^(0) + 5 xx 10^(1)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions in Column A and Column B separately and then compare their values. ### Step 1: Evaluate Column A The expression for Column A is: \[ 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} \] 1. **Calculate each term:** - \( 2 \times 10^1 = 20 \) - \( 3 \times 10^0 = 3 \) (since \( 10^0 = 1 \)) - \( 4 \times 10^{-1} = \frac{4}{10} = 0.4 \) - \( 5 \times 10^{-2} = \frac{5}{100} = 0.05 \) 2. **Add the terms together:** \[ 20 + 3 + 0.4 + 0.05 = 23.45 \] ### Step 2: Evaluate Column B The expression for Column B is: \[ 1 \times 10^{-3} + 2 \times 10^{-2} \times 10^{-2} + 3 \times 10^{-1} + 4 \times 10^0 + 5 \times 10^1 \] 1. **Calculate each term:** - \( 1 \times 10^{-3} = \frac{1}{1000} = 0.001 \) - \( 2 \times 10^{-2} \times 10^{-2} = 2 \times 10^{-4} = \frac{2}{10000} = 0.0002 \) - \( 3 \times 10^{-1} = \frac{3}{10} = 0.3 \) - \( 4 \times 10^0 = 4 \) - \( 5 \times 10^1 = 50 \) 2. **Add the terms together:** \[ 0.001 + 0.0002 + 0.3 + 4 + 50 = 54.3012 \] ### Step 3: Compare Column A and Column B Now we have: - Column A = 23.45 - Column B = 54.3012 Since \( 54.3012 > 23.45 \), we conclude that Column B is larger. ### Final Conclusion The value of Column B is greater than the value of Column A. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction A + B to products, what will be the order of reaction with respect to A and B? {:("Exp",[A](mol L^(-1)),[B](mol L^(-1)),"Initial rate (mol L^(-1) s^(-1))),(1,2.5 xx 10^(-4), 3 xx 10^(-5), 5 xx 10^(-4)),(2,5 xx 10^(-4),6 xx 10^(-5), 4 xx 10^(-3)),(3, 1xx 10^(-3), 6 xx 10^(-5), 1.6 xx 10^(-2)):}

Find the number from each of the following expanded forms : , (a) 8 xx 10^4 + 6 xx 10^3 + 0 xx 10^2 + 4 xx 10^1 + 5 xx 10^0 , (b) 4 xx 10^5 + 5 xx 10^3 + 3 xx 10^2 + 2 xx 10^0 , (c) 3 xx 10^4 + 7 xx 10^2 + 5 xx 10^0

Calculate the following a. (6.7 xx 10^(5)) xx (4.6 xx 10^(4)) b. (7.6 xx 10^(7)) xx (3.8 xx 10^(-4)) c. (6.8 xx 10^(-3)) xx (5.2 xx 10^(-4)) d. (6.7 xx 10^(5)) / (4.6 xx 10^(4)) e. (7.6 xx 10^(7)) / (3.8 xx 10^(-4)) f. (6.8 xx 10^(-3)) / (3.8 xx 10^(-4)) g. 7.65 xx 10^(2) + 2.72 xx 10^(3) h. 7.87 xx 10^(-4) - 2.61 xx 10^(-5)

For a reaction 2NO(g) + 2H_(2)(g) rarr N_(2)(g)+2H_(2)O(g) the following data were obtained: |{:(,[NO] (mol L^(-1)),[H_(2)] (mol L^(-1)),"Rate" (mol L^(-1) s^(-1))),(1.,5 xx 10^(-3),2.5 xx 10^(-3),3 xx 10^(-5)),(2.,15 xx 10^(-3),2.5 xx 10^(-3),9xx10^(-5)),(3.,15 xx 10^(-3),10 xx 10^(-3),3.6 xx 10^(-4)):}| (a) Calculating the order of reactions. (b) Find the rate constant. (c ) Find the initial rate if [NO] = [H_(2)] = 8.0 xx 10^(-3) M

Simplify. (i) (25 xx t^(-4))/(5^3 xx 10 xx t^(-8)) (t != 0) (ii) (3^(-5) xx 10^(-5) xx 125)/(5^(-7) xx 6^(-5))

Find the number : a. (4xx10^(5))+(3xx10^(2))+(7xx10^(0)) b. (3xx10^(6))+(8xx10^(3))+(1xx10^(1))

Identify the reaction order form each of the following rate constants: a. k = 7.06 xx 10^(-3) mol L^(-1) s^(-1) b. k = 5.6 xx 10^(-5) s^(-1) c. k = 1.25 xx 10^(-2) mol^(-1)l s^(-1) d. k = 1.25 xx 10^(-2) mol L^(2)s^(-1) e. k = 5.0 xx 10^(-6) atm^(-1)s^(-1)

Simplify : (4xx10^(-2))-(2.5xx10^(-3))

Show with regards to significant figure (i) 908 + 2.76 (ii) 999-989 (iii) 4.0 xx 10^(4) - 2.5 xx 10^(2) (iv) 4.0 xx 10^(4) - 2.5 xx 10^(5) (v) 6.75 xx 10^(3) + 4.52 xx 10^(2) (vi) 625 + 125