Home
Class 12
MATHS
{:("Column A",x = 1//y,"Column B"),(x +1...

`{:("Column A",x = 1//y,"Column B"),(x +1 + 1//x,,y + 1 + 1//y):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the expressions in Column A and Column B given that \( x = \frac{1}{y} \). ### Step-by-Step Solution: 1. **Identify the expressions in Column A and Column B:** - Column A: \( x + 1 + \frac{1}{x} \) - Column B: \( y + 1 + \frac{1}{y} \) 2. **Substitute \( x \) in terms of \( y \):** - Since \( x = \frac{1}{y} \), we can express \( \frac{1}{x} \) as \( y \) (because \( \frac{1}{x} = y \)). - Therefore, we can rewrite Column A: \[ \text{Column A} = x + 1 + y \] 3. **Substitute \( y \) in terms of \( x \):** - From the relationship \( y = \frac{1}{x} \), we can express \( \frac{1}{y} \) as \( x \). - Thus, we can rewrite Column B: \[ \text{Column B} = y + 1 + x \] 4. **Compare the two columns:** - Now we have: \[ \text{Column A} = x + 1 + y \] \[ \text{Column B} = y + 1 + x \] - Both expressions are identical, as the order of addition does not affect the result. 5. **Conclusion:** - Since Column A and Column B are equal, we conclude that: \[ \text{Column A} = \text{Column B} \] ### Final Answer: Both columns are equal.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A",0 < x < y,"Column B"),(x + 1//x,,y + 1//y):}

{:("Column A",x = 1//y,"Column B"),((x^2 + x + 2)/x,,(2y^2 + y + 1)/(y)):}

{:("Column A", x > 1,"Column B"),(1//x," ",1/(x - 1)):}

{:("Column A", x + y = 1, "Column B"),(x,,y):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",x > 0, "Column B"),(x^3 + 1,,x^4 + 1):}

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

{:("Column A",0 < x < y,"Column B"),(7^(1/x - 1/y),,7^(x - y)):}

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}