Home
Class 12
MATHS
{:("Column A",x = 1//y,"Column B"),((x^2...

`{:("Column A",x = 1//y,"Column B"),((x^2 + x + 2)/x,,(2y^2 + y + 1)/(y)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions in Column A and Column B and determine their relationship. ### Step-by-Step Solution: **Step 1: Analyze Column A** We have the expression in Column A: \[ \text{Column A} = \frac{x^2 + x + 2}{x} \] Given that \( x = \frac{1}{y} \), we will substitute this value into the expression. **Step 2: Substitute \( x \) in Column A** Substituting \( x = \frac{1}{y} \) into Column A: \[ \text{Column A} = \frac{\left(\frac{1}{y}\right)^2 + \left(\frac{1}{y}\right) + 2}{\frac{1}{y}} \] **Step 3: Simplify the expression** Calculating the numerator: \[ \left(\frac{1}{y}\right)^2 = \frac{1}{y^2}, \quad \left(\frac{1}{y}\right) = \frac{1}{y}, \quad \text{and } 2 = \frac{2y^2}{y^2} \] Thus, the numerator becomes: \[ \frac{1}{y^2} + \frac{1}{y} + 2 = \frac{1 + y + 2y^2}{y^2} \] Now substituting this back into Column A: \[ \text{Column A} = \frac{\frac{1 + y + 2y^2}{y^2}}{\frac{1}{y}} = \frac{1 + y + 2y^2}{y^2} \cdot y = \frac{1 + y + 2y^2}{y} \] **Step 4: Compare with Column B** Now we look at Column B: \[ \text{Column B} = \frac{2y^2 + y + 1}{y} \] **Step 5: Conclusion** We see that: \[ \text{Column A} = \frac{1 + y + 2y^2}{y} \quad \text{and} \quad \text{Column B} = \frac{2y^2 + y + 1}{y} \] Rearranging the terms in Column A gives us: \[ \text{Column A} = \frac{2y^2 + y + 1}{y} \] Thus, we find that: \[ \text{Column A} = \text{Column B} \] ### Final Answer Since both columns are equal, the correct option is: **C: The columns are equal.**
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A",x = 1//y,"Column B"),(x +1 + 1//x,,y + 1 + 1//y):}

{:("Column A", x + y = 1, "Column B"),(x,,y):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",0 < x < y,"Column B"),(x + 1//x,,y + 1//y):}

{:("Column A",x < 1//y " and x and y are positive","Column B"),((2 + x - x^2)/x,,(2y^2 + y - 1)/(y)):}

{:("Column A",0 < x < y,"Column B"),(7^(1/x - 1/y),,7^(x - y)):}

{:("Column A",3x + 7y > 7x + 3y,"Column B),(x + 2y,,y + 2x):}

{:("Column A", y > 0,"Column B"),(y^3 + y^4," ", y^4 - 2y^2):}

{:("Column A",x//15 > y//25,"Column B),(6y + 5x,,10x + 3y):}