Home
Class 12
MATHS
If p + q = 7 and pq = 12, then will is t...

If `p + q = 7 and pq = 12`, then will is the value of `1/(p^2) + 1/(q^2)` ?

A

`1//6`

B

`25//144`

C

`49//144`

D

`7//12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{p^2} + \frac{1}{q^2} \) given that \( p + q = 7 \) and \( pq = 12 \). ### Step-by-Step Solution: 1. **Start with the given equations:** \[ p + q = 7 \quad \text{(1)} \] \[ pq = 12 \quad \text{(2)} \] 2. **Rewrite the expression \( \frac{1}{p^2} + \frac{1}{q^2} \):** \[ \frac{1}{p^2} + \frac{1}{q^2} = \frac{q^2 + p^2}{p^2 q^2} \] 3. **Use the identity for \( p^2 + q^2 \):** We know that: \[ p^2 + q^2 = (p + q)^2 - 2pq \] Substitute the values from equations (1) and (2): \[ p^2 + q^2 = (7)^2 - 2(12) \] \[ = 49 - 24 = 25 \] 4. **Calculate \( p^2 q^2 \):** Since \( pq = 12 \), we have: \[ p^2 q^2 = (pq)^2 = 12^2 = 144 \] 5. **Substitute back into the expression:** Now substitute \( p^2 + q^2 \) and \( p^2 q^2 \) into the expression: \[ \frac{1}{p^2} + \frac{1}{q^2} = \frac{p^2 + q^2}{p^2 q^2} = \frac{25}{144} \] 6. **Final answer:** Thus, the value of \( \frac{1}{p^2} + \frac{1}{q^2} \) is: \[ \frac{25}{144} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If (p-q)^(2)=25 and pq=14 , what is the values of (p+q)^(2) ?

If (p+q)^(2)=78 and (p-q)^(2)=50 , what is the value of pq?

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If 2p=x+1/x and 2q=y+1/y , then the value of ((pq+sqrt((p^2-1)(q^2-1)))/(xy+1/(xy))) is

If p and q are roots of the quadratic equation x^(2) + mx + m^(2) + a = 0 , then the value of p^(2) + q^(2) + pq , is

If pgtqgt0 and prlt-1ltqr , then find the value of tan^(-1)((p-q)/(1+pq))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+rp))

If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2p - q.