Home
Class 12
MATHS
If x = 10a, y = 3b , z = 7c and x : y : ...

If `x = 10a, y = 3b , z = 7c and x : y : z = 10 : 3 : 7`, then `(7x + 2y + 5z)/(8a + b + 3c)` =

A

`111//12`

B

`7//6`

C

`8//15`

D

`108//123`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \((7x + 2y + 5z)/(8a + b + 3c)\) given the relationships between \(x\), \(y\), \(z\), \(a\), \(b\), and \(c\). ### Step 1: Express \(a\), \(b\), and \(c\) in terms of \(x\), \(y\), and \(z\) We know: - \(x = 10a \implies a = \frac{x}{10}\) - \(y = 3b \implies b = \frac{y}{3}\) - \(z = 7c \implies c = \frac{z}{7}\) ### Step 2: Substitute \(a\), \(b\), and \(c\) into the denominator Now, substituting these into the denominator \(8a + b + 3c\): \[ 8a + b + 3c = 8\left(\frac{x}{10}\right) + \frac{y}{3} + 3\left(\frac{z}{7}\right) \] This simplifies to: \[ = \frac{8x}{10} + \frac{y}{3} + \frac{3z}{7} \] \[ = \frac{4x}{5} + \frac{y}{3} + \frac{3z}{7} \] ### Step 3: Find a common denominator for the denominator The common denominator for \(5\), \(3\), and \(7\) is \(105\). We will convert each term: \[ \frac{4x}{5} = \frac{4x \cdot 21}{105} = \frac{84x}{105} \] \[ \frac{y}{3} = \frac{y \cdot 35}{105} = \frac{35y}{105} \] \[ \frac{3z}{7} = \frac{3z \cdot 15}{105} = \frac{45z}{105} \] So, \[ 8a + b + 3c = \frac{84x + 35y + 45z}{105} \] ### Step 4: Substitute \(y\) and \(z\) in terms of \(x\) From the ratio \(x : y : z = 10 : 3 : 7\), we can express \(y\) and \(z\) in terms of \(x\): \[ y = \frac{3}{10}x \quad \text{and} \quad z = \frac{7}{10}x \] ### Step 5: Substitute \(y\) and \(z\) into the numerator Now substituting \(y\) and \(z\) into the numerator \(7x + 2y + 5z\): \[ 7x + 2y + 5z = 7x + 2\left(\frac{3}{10}x\right) + 5\left(\frac{7}{10}x\right) \] This simplifies to: \[ = 7x + \frac{6}{10}x + \frac{35}{10}x = 7x + \frac{41}{10}x = \frac{70x + 41x}{10} = \frac{111x}{10} \] ### Step 6: Combine the results Now we have: \[ \frac{7x + 2y + 5z}{8a + b + 3c} = \frac{\frac{111x}{10}}{\frac{84x + 35y + 45z}{105}} \] Substituting \(y\) and \(z\) again: \[ = \frac{\frac{111x}{10}}{\frac{84x + 35\left(\frac{3}{10}x\right) + 45\left(\frac{7}{10}x\right)}{105}} \] Calculating the denominator: \[ = \frac{84x + \frac{105}{10}x + \frac{315}{10}x}{105} = \frac{84x + 10.5x + 31.5x}{105} = \frac{126x}{105} \] Thus, we have: \[ \frac{111x/10}{126x/105} = \frac{111 \cdot 105}{10 \cdot 126} \] This simplifies to: \[ = \frac{11655}{1260} = \frac{111}{12} \] ### Final Answer \[ \frac{(7x + 2y + 5z)}{(8a + b + 3c)} = \frac{111}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",x = a"," y = 2b"," z = 3c","x : y : z = 1 : 2 : 3,"Column B"),((x + y+z)/(a + b+c),,2):}

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x - y +z

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x + y + z

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 3y - 2z - 5x

If x= 10^(1.4), y = 10^(0.7) , and x^(z) = y^(3) , then what is the value of z?

If x : y=2:3 and y : z=2:3 , then x : z= (a) 2:3 (b) 3:4 (c) 5:7 (d) 4:9

Add : 8x - 3y + 7z, -4x + 5y - 4z, -x - y - 2z

The lines x + y + z - 3 = 0 = 2x - y + 5z - 6 and x - y - z + 1 = 0 = 2x + 3y + 7z - k are coplanar then k equals

If x =a, y=b, z=c is a solution of the system of linear equations x + 8y + 7z =0, 9 x + 2y + 3z =0, x + y+z=0 such that point (a,b,c ) lies on the plane x + 2y + z=6, then 2a+ b+c equals

The planes 2x + 5y + 3z = 0, x-y+4z = 2 and7y-5z + 4 = 0