Home
Class 12
MATHS
If x != 0 , (x(x^5)^2)/(x^4) :...

If `x != 0 , (x(x^5)^2)/(x^4)` :

A

`x^5`

B

`x^6`

C

`x^7`

D

`x^8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{x(x^5)^2}{x^4}\) for \(x \neq 0\), we will use the properties of exponents. Let's break it down step by step. ### Step 1: Simplify the expression in the numerator The numerator consists of \(x\) multiplied by \((x^5)^2\). We can simplify \((x^5)^2\) using the exponent rule that states \((x^a)^b = x^{a \cdot b}\). \[ (x^5)^2 = x^{5 \cdot 2} = x^{10} \] So, the numerator becomes: \[ x \cdot x^{10} \] ### Step 2: Combine the terms in the numerator Now we can combine \(x\) and \(x^{10}\) using the property \(x^a \cdot x^b = x^{a + b}\): \[ x \cdot x^{10} = x^{1 + 10} = x^{11} \] ### Step 3: Rewrite the expression Now we can rewrite the entire expression: \[ \frac{x^{11}}{x^4} \] ### Step 4: Apply the division property of exponents Using the property \(\frac{x^a}{x^b} = x^{a - b}\), we can simplify the expression: \[ \frac{x^{11}}{x^4} = x^{11 - 4} = x^{7} \] ### Final Answer Thus, the simplified form of the expression \(\frac{x(x^5)^2}{x^4}\) is: \[ \boxed{x^7} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

A function h is defined as follows : for x gt 0, h(x)=x^(7)+2x^(5)-12x^(3)+15x-2 for x le0, h(x)=x^(6)-3x^(4)+2x^(2)-7x-5 What is the value of h(-1) ?

Median of (x)/(5), x, (x)/(4), (x)/(2), (x)/(3) is 8. If x gt 0 then value of x is

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value of f(1) is :

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

Sovle x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0

Which of the following are quadratic equations? (i) x^(2)8x+12=0 (ii) x+(1)/(x)=5 (iii) x+(5)/(x)=x^(2) (iv) x^(2)-5sqrtx+7=0 (v) x^(2)-5x-sqrtx+4=0 (vi) x^(2)-(1)/(x^(2))=4 (vii) 5x^(2)-7x=3x^(2)-7x+3 (viii) (1)/(4)x^(2)+(7)/(6)x-2=0

Solve : (i) (x^(2)-x)^(2)+5(x^(2)-x)+4=0 (ii) (x^(2)-3x)^(2)-16(x^(2)-3x)-36=0

The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0 is :