Home
Class 12
MATHS
{:("Column A"," ","Column B"),((6^...

`{:("Column A"," ","Column B"),((6^4)/(3^2),,2^4 cdot 3^2):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions in Column A and Column B separately and then compare their values. ### Step 1: Evaluate Column A Column A is given as: \[ \frac{6^4}{3^2} \] First, we can calculate \(6^4\) and \(3^2\): \[ 6^4 = 6 \times 6 \times 6 \times 6 = 1296 \] \[ 3^2 = 3 \times 3 = 9 \] Now, substitute these values back into the expression: \[ \frac{6^4}{3^2} = \frac{1296}{9} \] Now, perform the division: \[ \frac{1296}{9} = 144 \] So, Column A evaluates to: \[ \text{Column A} = 144 \] ### Step 2: Evaluate Column B Column B is given as: \[ 2^4 \cdot 3^2 \] First, we can calculate \(2^4\) and \(3^2\): \[ 2^4 = 2 \times 2 \times 2 \times 2 = 16 \] \[ 3^2 = 3 \times 3 = 9 \] Now, substitute these values back into the expression: \[ 2^4 \cdot 3^2 = 16 \cdot 9 \] Now, perform the multiplication: \[ 16 \cdot 9 = 144 \] So, Column B evaluates to: \[ \text{Column B} = 144 \] ### Step 3: Compare Column A and Column B Now we compare the results from Column A and Column B: \[ \text{Column A} = 144 \quad \text{and} \quad \text{Column B} = 144 \] Since both columns are equal, we conclude: \[ \text{Column A} = \text{Column B} \] ### Final Answer Both columns are equal.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A"," ","Column B"),((-3)^2,,(-2)^3):}

{:("Column A"," ","Column B"),(x(x^2)^(4),,(x^3)^3):}

{:("Column A",1 < p < 3,"Column B),(p^2,,2p):}

{:("Column A", " ","Column B"),((sqrt(2))/(3)," ",2//5):}

{:("Column A",a^2 + 7a < 0,"Column B),(a,,0):}

{:("Column A",x > 0, "Column B"),(x^3 + 1,,x^4 + 1):}

{:("Column A"," ","Column B"),((2^(20) - 2^(19))/(2^11),,2^(8)):}

{:("Column A"," ","Column B"),(4.2(3.3),,4(3.3) + 0.2(3.3)):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A", y > 0,"Column B"),(y^3 + y^4," ", y^4 - 2y^2):}