Home
Class 12
MATHS
If x= 10^(1.4), y = 10^(0.7) , and x^(z...

If `x= 10^(1.4), y = 10^(0.7) , and `x^(z) = y^(3)`, then what is the value of z?

A

`0.5`

B

`0.66`

C

`1.5`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^z = y^3 \) given \( x = 10^{1.4} \) and \( y = 10^{0.7} \), we can follow these steps: ### Step 1: Substitute the values of \( x \) and \( y \) We know that: \[ x = 10^{1.4} \quad \text{and} \quad y = 10^{0.7} \] Substituting these into the equation \( x^z = y^3 \): \[ (10^{1.4})^z = (10^{0.7})^3 \] ### Step 2: Apply the power of a power property Using the property \( (a^m)^n = a^{m \cdot n} \), we can simplify both sides: \[ 10^{1.4z} = 10^{0.7 \cdot 3} \] ### Step 3: Simplify the right side Calculating the right side: \[ 0.7 \cdot 3 = 2.1 \] So we have: \[ 10^{1.4z} = 10^{2.1} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 1.4z = 2.1 \] ### Step 5: Solve for \( z \) To find \( z \), divide both sides by \( 1.4 \): \[ z = \frac{2.1}{1.4} \] ### Step 6: Simplify the fraction Calculating \( \frac{2.1}{1.4} \): \[ z = \frac{21}{14} = \frac{3}{2} = 1.5 \] Thus, the value of \( z \) is: \[ \boxed{1.5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If xyz ne 0 and 30x^(-5)y^(12)z^(-8)=10 x^(-6)y^(5)z^(4) , then what is the value of x in terms of y and z ?

If x,y and z are positive integers such that x < y < z and x + y + z = 6 , then what is the value of z?

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If the plane 3x - 4y + 5z = 0 is parallel to (2x-1)/4=(1-y)/(_3)=(z-2)/a , then the value of a is

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1). x y+y z+z y and (2). x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z y and (2) x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z x and (2) x(y+z)+y(z+x)+z(x+y)