Home
Class 12
MATHS
(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2...

`(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3))` =

A

1

B

`sqrt(6) - sqrt(2)`

C

`sqrt(6) + sqrt(2)`

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((4(\sqrt{6} + \sqrt{2})) / (\sqrt{6} - \sqrt{2}) - (2 + \sqrt{3}) / (2 - \sqrt{3})\), we will simplify each part separately and then combine the results. ### Step 1: Simplify the first expression We start with the first expression: \[ \frac{4(\sqrt{6} + \sqrt{2})}{\sqrt{6} - \sqrt{2}} \] To simplify this, we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, which is \((\sqrt{6} + \sqrt{2})\): \[ \frac{4(\sqrt{6} + \sqrt{2})(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} \] ### Step 2: Calculate the denominator Now, we calculate the denominator using the difference of squares: \[ (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4 \] ### Step 3: Calculate the numerator Next, we calculate the numerator: \[ 4(\sqrt{6} + \sqrt{2})^2 = 4(\sqrt{6}^2 + 2\sqrt{6}\sqrt{2} + \sqrt{2}^2) = 4(6 + 2\sqrt{12} + 2) = 4(8 + 2\sqrt{12}) = 32 + 8\sqrt{12} \] ### Step 4: Combine the results Now we can combine the results: \[ \frac{32 + 8\sqrt{12}}{4} = 8 + 2\sqrt{12} \] ### Step 5: Simplify \(\sqrt{12}\) We can simplify \(\sqrt{12}\): \[ \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \] So, we substitute back: \[ 8 + 2(2\sqrt{3}) = 8 + 4\sqrt{3} \] ### Step 6: Simplify the second expression Now we simplify the second expression: \[ \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \] Again, we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, which is \((2 + \sqrt{3})\): \[ \frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} \] ### Step 7: Calculate the denominator Calculating the denominator: \[ (2)^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] ### Step 8: Calculate the numerator Now, calculating the numerator: \[ (2 + \sqrt{3})^2 = 2^2 + 2(2)(\sqrt{3}) + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] ### Step 9: Combine the results So, the second expression simplifies to: \[ 7 + 4\sqrt{3} \] ### Step 10: Subtract the second expression from the first Now, we subtract the second expression from the first: \[ (8 + 4\sqrt{3}) - (7 + 4\sqrt{3}) = 8 - 7 + 4\sqrt{3} - 4\sqrt{3} = 1 \] ### Final Answer Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

(3+sqrt(2))(2-sqrt(3))(3-sqrt(2))(2+sqrt(3))

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2