Home
Class 12
MATHS
{:("Column A"," ","Column B"),(((...

`{:("Column A"," ","Column B"),((((sqrt7)^(x))^(2))/((sqrt7)^(11)),,(7^(x))/(7^(13))):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the expressions in Column A and Column B. ### Step 1: Write down the expressions from Column A and Column B. - Column A: \(\frac{(\sqrt{7})^{x^2}}{(\sqrt{7})^{11}}\) - Column B: \(\frac{7^x}{7^{13}}\) ### Step 2: Simplify the expression in Column A. We know that \(\sqrt{7} = 7^{1/2}\). Therefore, we can rewrite the expression in Column A as: \[ \frac{(7^{1/2})^{x^2}}{(7^{1/2})^{11}} \] ### Step 3: Apply the power of a power property. Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify further: \[ \frac{7^{(1/2) \cdot x^2}}{7^{(1/2) \cdot 11}} = \frac{7^{x^2/2}}{7^{11/2}} \] ### Step 4: Use the quotient property of exponents. Using the property \(\frac{a^m}{a^n} = a^{m-n}\), we can combine the powers: \[ 7^{(x^2/2) - (11/2)} = 7^{(x^2 - 11)/2} \] ### Step 5: Simplify the expression in Column B. The expression in Column B can be simplified using the same quotient property: \[ \frac{7^x}{7^{13}} = 7^{x - 13} \] ### Step 6: Compare the two simplified expressions. Now we have: - Column A: \(7^{(x^2 - 11)/2}\) - Column B: \(7^{(x - 13)}\) To compare these two expressions, we need to analyze the exponents: 1. Column A exponent: \(\frac{x^2 - 11}{2}\) 2. Column B exponent: \(x - 13\) ### Step 7: Set up the inequality for comparison. We need to determine when: \[ \frac{x^2 - 11}{2} > x - 13 \] ### Step 8: Clear the fraction by multiplying both sides by 2. \[ x^2 - 11 > 2(x - 13) \] \[ x^2 - 11 > 2x - 26 \] ### Step 9: Rearrange the inequality. \[ x^2 - 2x + 15 > 0 \] ### Step 10: Find the roots of the quadratic equation. To find the roots, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -2\), and \(c = 15\): \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 15}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 - 60}}{2} = \frac{2 \pm \sqrt{-56}}{2} \] Since the discriminant is negative, the quadratic has no real roots and is always positive. ### Conclusion: Since \(x^2 - 2x + 15 > 0\) for all real \(x\), it follows that Column A is always greater than Column B. Therefore, the correct option is that Column A is larger. ### Final Answer: Column A is larger than Column B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",a^2 + 7a < 0,"Column B),(a,,0):}

{:("Column A",0 < x < y,"Column B"),(7^(1/x - 1/y),,7^(x - y)):}

{:("Column A",3x + 7y > 7x + 3y,"Column B),(x + 2y,,y + 2x):}

{:("Column A", 7x + 3y = 12","3x + 7y = 8 , "Column B"),(x-y,,1):}

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

{:("Column A", x + y=7 and x^2 + y^2 = 25 , "Column B"),(x+y^2,,3 + 4^2):}

int_2^5 (sqrt(x))/(sqrt(x)+sqrt(7-x)) dx

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

Prove that (1)/(sqrt(7))=(1)/(sqrt(7))times(sqrt(7))/(sqrt(7))

lim_(x->2)(sqrt(x+7)-3)/(x-2)