Home
Class 12
MATHS
{:("Column A"," ","Column B"),((2^...

`{:("Column A"," ","Column B"),((2^(20) - 2^(19))/(2^11),,2^(8)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression in Column A and compare it with the value in Column B. ### Step-by-Step Solution: 1. **Identify Column A**: \[ \text{Column A} = \frac{2^{20} - 2^{19}}{2^{11}} \] 2. **Factor out the common term in the numerator**: - In the numerator \(2^{20} - 2^{19}\), we can factor out \(2^{19}\): \[ 2^{20} - 2^{19} = 2^{19}(2^1 - 1) = 2^{19}(2 - 1) = 2^{19}(1) \] - Therefore, Column A becomes: \[ \text{Column A} = \frac{2^{19} \cdot 1}{2^{11}} \] 3. **Simplify the fraction**: - Using the law of exponents, \(\frac{A^M}{A^N} = A^{M-N}\): \[ \text{Column A} = 2^{19 - 11} = 2^{8} \] 4. **Identify Column B**: \[ \text{Column B} = 2^{8} \] 5. **Compare Column A and Column B**: - We find that both Column A and Column B are equal: \[ \text{Column A} = 2^{8} \quad \text{and} \quad \text{Column B} = 2^{8} \] ### Conclusion: Since both columns are equal, the answer is that Column A is equal to Column B.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A"," ","Column B"),((-3)^2,,(-2)^3):}

{:("Column A",1 < p < 3,"Column B),(p^2,,2p):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",a^2 + 7a < 0,"Column B),(a,,0):}

{:("Column A"," ","Column B"),(x(x^2)^(4),,(x^3)^3):}

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

{:("Column A", " ","Column B"),((sqrt(2))/(3)," ",2//5):}

{:("Column A"," ","Column B"),((((sqrt7)^(x))^(2))/((sqrt7)^(11)),,(7^(x))/(7^(13))):}

{:("Column A"," ","Column B"),((6^4)/(3^2),,2^4 cdot 3^2):}

{:("Column A",x != 3 and x != 6,"Column B"),((2x^2 - 72)/(x - 6),,(2x^2 - 18)/(x - 3)):}