Home
Class 12
MATHS
{:("Column A",a = 49"," b = 59,"Column B...

`{:("Column A",a = 49"," b = 59,"Column B"),((a^2 - b^2)/(a - b),,(a^2 - b^2)/(a + b)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions in Column A and Column B using the given values of \( a = 49 \) and \( b = 59 \). ### Step-by-Step Solution: 1. **Identify the expressions in Column A and Column B**: - Column A: \( \frac{a^2 - b^2}{a - b} \) - Column B: \( \frac{a^2 - b^2}{a + b} \) 2. **Use the difference of squares formula**: We know that \( a^2 - b^2 \) can be factored as \( (a - b)(a + b) \). Thus: \[ a^2 - b^2 = (a - b)(a + b) \] 3. **Simplify Column A**: Substitute the factorization into Column A: \[ \text{Column A} = \frac{(a - b)(a + b)}{a - b} \] Since \( a - b \) is not zero, we can cancel \( a - b \): \[ \text{Column A} = a + b \] 4. **Simplify Column B**: Substitute the factorization into Column B: \[ \text{Column B} = \frac{(a - b)(a + b)}{a + b} \] Since \( a + b \) is not zero, we can cancel \( a + b \): \[ \text{Column B} = a - b \] 5. **Substitute the values of \( a \) and \( b \)**: Now substitute \( a = 49 \) and \( b = 59 \): - For Column A: \[ \text{Column A} = 49 + 59 = 108 \] - For Column B: \[ \text{Column B} = 49 - 59 = -10 \] 6. **Compare the values of Column A and Column B**: - Column A = 108 - Column B = -10 Since \( 108 > -10 \), we conclude that Column A is larger than Column B. ### Final Answer: Column A is larger than Column B.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",a > b > 0,"Column B),((a - b)/(a + b),,(a^2 - b^2)/(a^2 + b^2)):}

{:("Column A",a^2 + 7a < 0,"Column B),(a,,0):}

{:("Column A"," ", "Column B"),(/_A,,72^@):}

{:("Column A"," ","Column B"),((-3)^2,,(-2)^3):}

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",1 < p < 3,"Column B),(p^2,,2p):}

{:("Column A"," ","Column B"),((2^(20) - 2^(19))/(2^11),,2^(8)):}

{:("Column A", "k < 0","Column B"),(k^2(k + 1/2)^(2)," ",0):}