Home
Class 12
MATHS
{:("Column A",x != 3 and x != 6,"Column ...

`{:("Column A",x != 3 and x != 6,"Column B"),((2x^2 - 72)/(x - 6),,(2x^2 - 18)/(x - 3)):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expressions in Column A and Column B and then compare their values. ### Step 1: Simplify Column A We start with the expression in Column A: \[ \text{Column A} = \frac{2x^2 - 72}{x - 6} \] First, we can factor out the numerator: \[ 2x^2 - 72 = 2(x^2 - 36) = 2(x^2 - 6^2) \] Now we can use the difference of squares: \[ x^2 - 6^2 = (x + 6)(x - 6) \] Thus, we can rewrite Column A: \[ \text{Column A} = \frac{2(x + 6)(x - 6)}{x - 6} \] Since \(x \neq 6\), we can cancel \(x - 6\): \[ \text{Column A} = 2(x + 6) \] ### Step 2: Simplify Column B Now we simplify the expression in Column B: \[ \text{Column B} = \frac{2x^2 - 18}{x - 3} \] We can factor out the numerator: \[ 2x^2 - 18 = 2(x^2 - 9) = 2(x^2 - 3^2) \] Using the difference of squares again: \[ x^2 - 3^2 = (x + 3)(x - 3) \] Thus, we can rewrite Column B: \[ \text{Column B} = \frac{2(x + 3)(x - 3)}{x - 3} \] Since \(x \neq 3\), we can cancel \(x - 3\): \[ \text{Column B} = 2(x + 3) \] ### Step 3: Compare Column A and Column B Now we have: \[ \text{Column A} = 2(x + 6) \] \[ \text{Column B} = 2(x + 3) \] To compare these, we can look at the difference: \[ \text{Column A} - \text{Column B} = 2(x + 6) - 2(x + 3) = 2x + 12 - 2x - 6 = 6 \] Since \(6 > 0\), it follows that: \[ \text{Column A} > \text{Column B} \] ### Conclusion Thus, Column A is greater than Column B for all \(x\) such that \(x \neq 3\) and \(x \neq 6\). ### Final Answer The answer is that Column A is greater than Column B. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x != 3 and x != 6 , then (2x^2 - 72)/(x - 6) - (2x^2 - 18)/(x - 3) =

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

{:("Column A",|x|+|y| = 2 and x + y = 0, "Column B"),(x,,y):}

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A",x = 1//y,"Column B"),((x^2 + x + 2)/x,,(2y^2 + y + 1)/(y)):}

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A",3x + 7y > 7x + 3y,"Column B),(x + 2y,,y + 2x):}

{:("Column A",2x + 1 > 3x + 2 and 5x + 2 > 4x, "Column B"),(x,,1):}

{:("Column A",x//a > 4 and y//a < -6,"Column B),(x,(a^2=9 ,ab^2=-8),y):}