Home
Class 12
MATHS
If x != 3 and x != 6, then (2x^2 - 72)/(...

If `x != 3 and x != 6`, then `(2x^2 - 72)/(x - 6) - (2x^2 - 18)/(x - 3)` =

A

3

B

6

C

9

D

12

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",x != 3 and x != 6,"Column B"),((2x^2 - 72)/(x - 6),,(2x^2 - 18)/(x - 3)):}

3x - 7 gt 2 ( x - 6 ), 6 - x gt 11 - 2x

Divide : 6x^(3) - 13x^(2) - 13x + 30 by 2x^(2) - x - 6

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

(2x-3)/4-2>=(4x)/3-6

If (3x)/((x-6)(x+a))=2/(x-6)+1/(x+a) " then "a=

{:(3x + y = 18),(6x + 2y = 16):}

Find the quotient and the remainder (if any), when : 3x^(4) + 6x^(3) - 6x^(2) + 2x - 7 is divided by x - 3.

Factorise : 3x^5 - 6x^4 - 2x^3 + 4x^2 + x-2

Solve (6x^2-5x-3)/(x^2-2x+6)le 4