Home
Class 12
MATHS
{:("Column A",x = 1/(1 + 1/(1 + 1/2)),"C...

`{:("Column A",x = 1/(1 + 1/(1 + 1/2)),"Column B"),(x,,1):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression for \( x \) given in Column A and then compare it with the value in Column B. ### Step-by-Step Solution: 1. **Start with the expression for \( x \):** \[ x = \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} \] 2. **Simplify the innermost fraction:** - Calculate \( 1 + \frac{1}{2} \): \[ 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2} \] 3. **Substitute back into the expression:** - Now substitute \( \frac{3}{2} \) into the expression: \[ x = \frac{1}{1 + \frac{1}{\frac{3}{2}}} \] 4. **Simplify the next fraction:** - Calculate \( \frac{1}{\frac{3}{2}} \): \[ \frac{1}{\frac{3}{2}} = \frac{2}{3} \] 5. **Substitute back again:** - Now substitute \( \frac{2}{3} \) into the expression: \[ x = \frac{1}{1 + \frac{2}{3}} \] 6. **Combine the terms in the denominator:** - Calculate \( 1 + \frac{2}{3} \): \[ 1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{5}{3} \] 7. **Final calculation for \( x \):** - Substitute \( \frac{5}{3} \) back into the expression for \( x \): \[ x = \frac{1}{\frac{5}{3}} = \frac{3}{5} \] 8. **Convert \( x \) to decimal:** - Calculate \( \frac{3}{5} \): \[ \frac{3}{5} = 0.6 \] 9. **Compare with Column B:** - Column A: \( x = 0.6 \) - Column B: \( 1 \) 10. **Conclusion:** - Since \( 0.6 < 1 \), we conclude that Column B is greater than Column A. ### Final Answer: Column B is greater than Column A.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following quantitative comparison problem by plugging in the number 0,1,2, -2, and 1//2 in that order - when possible. {:("Column A", -1 < x < 0,"Column B"),(x,,1//x):}

{:("Column A",x = 3.636 cdot 10^(16), "Column B"),((x + 1)/(x - 1),,(x - 1)/(x+1)):}

{:("Column A",x = 1//y,"Column B"),((x^2 + 1)/(x),,(y^2 + 1)/(y)):}

{:("Column A",0 < x < y,"Column B"),(x + 1//x,,y + 1//y):}

Solve the following quantitative comparison problem by plugging in the number 0,1,2, -2, and 1//2 in that order - when possible. {:("Column A",x = y != 0,"Column B"),(0,,x//y):}

{:("Column A", x > 1,"Column B"),(1//x," ",1/(x - 1)):}

{:("Column A",|x| != 1//2,"Column B"),((4x^2 - 1)/(2x + 1),,(4x^2 - 1)/(2x - 1)):}

{:("Column A",x = 1//y,"Column B"),(x +1 + 1//x,,y + 1 + 1//y):}

{:("Column A",2x + 1 > 3x + 2 and 5x + 2 > 4x, "Column B"),(x,,1):}

{:("Column A", 7x + 3y = 12","3x + 7y = 8 , "Column B"),(x-y,,1):}