Home
Class 12
MATHS
If a1,a2,a3... are in A.P then prove tha...

If `a_1,a_2,a_3...` are in A.P then prove that `1/(sqrta_1+sqrta_2)+/(sqrta_2+sqrta_3)+...+1/(sqrta_(n-1)+sqrta_n)= (n-1)/(sqrta_n+sqrta_1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,.......a_n are in AP where a_1 gt 0foralli then the value of 1/(sqrta_1+sqrta_2)+1/(sqrta_2+sqrta_3)+....1/(sqrta_(n-1)+sqrta_n=

If a_r>0, r in N and a_1.a_2,....a_(2n) are in A.P then (a_1+a_2)/(sqrta_1+sqrta_2)+(a_2+a_(2n-1))/(sqrta_2+sqrta_3)+.....+(a_n+a_(n+1))/(sqrt a_n+sqrta_(n+1))=

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If a, b, c are in A.P., prove that : 1/(sqrtb+sqrtc), 1/(sqrtc+sqrta), 1/(sqrta+sqrtb) are also in A.P.

(sqrta + sqrtb)^2 = ?

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a,b,c are in AP, show that 1/((sqrtb+sqrtc)),1/((sqrtc+sqrta)),1/((sqrta+sqrtb)) are in AP.

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""