Home
Class 11
MATHS
Let f(x)={sinx; where x=integer and 0 ...

Let `f(x)={sinx;` where x=integer and 0 ; otherwise} : `g(x) = {(x^2+1 ; x!= 0,2),(4 ; x=0),(5 ; x=2)}` ,then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={sin x; where x= integer and 0 otherwise }:g(x)={(x^(2)+1;x!=0,2),(4;x=0),(5;x=2)}

If f(x)={{:(,sin x,x ne npi, n in Z),(,,2,"otherwise"):} and g(x)={{:(,x^(2)+1,x ne 0","2),(,4,x=0),(,5,x=2):}"then " underset(x to 0)"Lt" g(f(x))=

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in Z), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

If f(x) = {{:(sin x"," x ne npi"," n = 0"," pm1"," pm2","...),(" 2, ""otherwise"):}} and g (x) ={{:(x^(2)+1"," x ne 0","2),(" 4, "x=0),(" 5, "x=2):}},"then" lim_(x to 0) g[f(x)] is ………