Home
Class 11
MATHS
If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b...

If `(logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b)` , then which of the following is/are true? `z y z=1` (b) `x^a y^b z^c=1` `x^(b+c)y^(c+b)=1` (d) `x y z=x^a y^b z^c`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ \frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b} = k \] where \( k \) is some constant. From this, we can express \( \log x \), \( \log y \), and \( \log z \) in terms of \( k \): ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CENGAGE|Exercise Solved Examples And Exercises|67 Videos
  • PERMUTATIONS AND COMBINATIONS

    CENGAGE|Exercise Solved Examples And Exercises|433 Videos

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then the value of (x+y+z) is :

3) If (a)/(x+y)=(b)/(y+z)=(c)/(z-x) ,then show that b=a+c.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d) , then the what is x^(3)+y^(3)+z^(3) equal to?

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to