Home
Class 11
MATHS
If (log)2x+(log)2ygeq6, then the least v...

If `(log)_2x+(log)_2ygeq6,` then the least value of `x+y` is 4 (b) 8 (d) 16 (d) 32

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if log_(2)x+log_(2)y>=6 then the least value of x+y

If log_(x)4=0.4, then the value of x is a.1 b.4 c.16d.32

If log_(5)(x^(2)+x)-log_(5)(x+1)=2, then the value of x is a.5 b.10 c.25 d.32

If log_(2)x+log_(2)y>=6prove that the smallest possible value of x+y is 16.

If log_2log_3log_4log_5A=x, then the value of A is (a) 120^x (b) 2^(60 x) (c) 2^(3^(4^(5^x))) (d) 5^(4^(3^(2^x)))

If log_(y)x=8" and "log_(10y)16x=4 , then find the value of y.

if (log)_(y)x+(log)_(x)y=2,x^(2)+y=12, the value of xy is 9(b)12(c)15(d)30

If log_(8)x=(2)/(3), then the value of x is a.(3)/(4)b .(4)/(3)c.3d.4

. If log2,log(2x-1) and log(2x+3) are in A.P.then the value of x is (A) 5/2(C)log,5 (B) log25(D)logs3

If 2log(x+4) = log 16, then x=?