Home
Class 11
MATHS
Solve: 4^((log2logx))=logx-(logx)^2+1 (...

Solve: `4^((log_2logx))=logx-(logx)^2+1` (base is e)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 4^(log_(2)logx)=logx-(logx)^(2)+1 (base is e).

Solve log(x+1)=2logx

e^(x+2logx)

int(log(logx))/(x.logx)dx=

Solve: xlogx(dy)/(dx)+y=2logx

log[log(logx^(5))]

d/(dx) [log(logx)] =

Solve 4^logx =32 -x^log4 .

∫ (1)/(x.logx.(2+logx))

(1)/(logx)-(1)/((log x)^(2))