Home
Class 11
MATHS
Solve: |x-1|^((log)(10)x)^2-(log)(10)x^2...

Solve: `|x-1|^((log)_(10)x)^2-(log)_(10)x^2=|x-1|^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

((log)_(10)(x-3))/((log)_(10)(x^(2)-21))=(1)/(2)

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Solution x^((log_(10)x)^(2)-(3log_(10))^(x+1))>1000 for x in R is

Find all the solutions of the equation |x-1|^((log x)^(2)-log x^(2))=|x-1|^(3), where base of logarithm is 10

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.

Solve (x+1)^(log_(10)(x+1))=100(x+1)

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))