Home
Class 12
MATHS
The value of sum(r=1)^n1/(sqrt(a+r x)+sq...

The value of `sum_(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Find he value of sum_(r=1)^(4n+7)backslash i^(r) where,i=sqrt(-1)

The value of sum_(r=1)^(5)(i^(r )-i^(r+1)) is, where i=sqrt(-1)

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5