Home
Class 11
MATHS
For which of the hyperbolas, can we have...

For which of the hyperbolas, can we have more than one pair of perpendicular tangents? `(x^2)/4-(y^2)/9=1` (b) `(x^2)/4-(y^2)/9=-1` `x^2-y^2=4` (d) `x y=44`

Promotional Banner

Similar Questions

Explore conceptually related problems

For which of the hyperbolas, can we have more than one pair of perpendicular tangents? (a) (x^2)/4-(y^2)/9=1 (b) (x^2)/4-(y^2)/9=-1 (c)x^2-y^2=4 (d) x y=44

For which of the hyperbolas, can we have more than one pair of perpendicular tangents? (a) (x^2)/4-(y^2)/9=1 (b) (x^2)/4-(y^2)/9=-1 (c) x^2-y^2=4 (d) x y=44

For which of the hyperbolas,can we have more than one pair of perpendicular tangents? (x^(2))/(4)-(y^(2))/(9)=1( b) (x^(2))/(4)-(y^(2))/(9)=-1x^(2)-y^(2)=4 (d) xy=44

The locus of the foot of the perpendicular from the center of the hyperbola x y=1 on a variable tangent is (x^2-y^2)=4x y (b) (x^2-y^2)=1/9 (x^2-y^2)=7/(144) (d) (x^2-y^2)=1/(16)

The locus of the foot of the perpendicular from the center of the hyperbola x y=1 on a variable tangent is (x^2+y^2)^2=4x y (b) (x^2-y^2)=1/9 (x^2-y^2)=7/(144) (d) (x^2-y^2)=1/(16)

The locus of the foot of the perpendicular from the center of the hyperbola x y=1 on a variable tangent is (a) (x^2+y^2)^2=4x y (b) (x^2-y^2)=1/9 (x^2-y^2)=7/(144) (d) (x^2-y^2)=1/(16)

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0