Home
Class 11
MATHS
If S={x in N :2+(log)2sqrt(x+1)>1-(log)...

If `S={x in N :2+(log)_2sqrt(x+1)>1-(log)_(1/2)sqrt(4-x^2)}` , then (a)`S={1}` (b) `S=Z` (d) `S=N` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

" 1."(d)/(dx){log(x+sqrt(x^(2)+1))}=

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

If y sqrt(x^(2)+1)=log{sqrt(x^(2)+1)-x} then (x^(2)+1)(dy)/(dx)+xy+1=(a)0(b)1(c)2(d) non of these

If A=log_(1/2) (1/2-x)+log_2sqrt(4x^2-4x+1) and A^2+B^2=10 then

Differentiate y=log(x+sqrt(x^2+1))

The value of intx/sqrt(x^4+x^2+1)dx equals (i) 1/2log (x^2+sqrt(x^4+x^2+1)) (ii) 1/2log (x^2+1/2+sqrt(x^4+x^2+1)) (iii) log (x^2+1/2+sqrt(x^4+x^2+1)) (iv) none of these

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

Solve log_2(4^(x+1)+4).log_2(4^x+1)=log_(1//sqrt2)(1/sqrt8) .

S=((1)/(2))^(2)+(((1)/(2))^(2)1)/(3)+(((1)/(2))^(3)1)/(4)+(((1)/(2))^(4)1)/(5)+......, then (a)S=ln8-2( b) S=ln((4)/(e))(c)S=ln4+1(d) none of these