Home
Class 11
MATHS
Solution set of the inequality 1/(2^x-1)...

Solution set of the inequality `1/(2^x-1)>1/(1-2^(x-1))` is `1,oo)` (b) `0,(log)_2(4/3)` (c) `(-1,oo)` `(0,(log)_2(4/3)uu(1,oo)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of the inequality max {1-x^(2),|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo)(0,2)(d)(0,2)

Solution set of the inequality log_(0.8)(log_(6)(x^(2)+x)/(x+4))<0 is (-4,-3) (b) (-3,4)uu(8,oo)(-3,oo)(d)(-4,-3)uu(8,oo)

Solution set of the inequation (x^(2)+4x+4)/(2x^(2)-x-1)>0, is x in(-oo,-2)uu(-2,1)x in(-oo,-2)uu(-2,-(1)/(2))uu(1,oo)x in(-oo,-2)uu(-(1)/(2),1)uu(1,oo)x in(-oo,1)

The complete solution set of the inequality (3^(x)(2x-5)(x^(2)+x+2))/((cos x-2)(x^(2)+x))<=0 is (i) (-oo,-1)( (ii) ((5)/(2),oo) (iii) (-1,(5)/(2)] (iv) (-1,0)uu[(5)/(2),oo)

Solution set of the inequation,(x^(2)-5x+6)/(x^(2)+x+1)<0 is x in(-oo,2) (b) x in(2,3)x in(-oo,2)uu(3,oo)( d) x in(3,oo)

The solution set of the inequation (3)/(|x|+2) O (-1,1) O [-1,1] O (-oo,-1]uu[1,oo) O (1, oo)

The complete solution set of the inequality (1)/((log_(4)(x-1))/(x+2)<(1)/(log_(4)(x+3))), is,(-a,oo), then determine 'a .

Solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sin x-2)(x+1)^(2)x)<=0 is [(3)/(2),oo) b.(-oo,-1)uu[(3)/(2),oo) c.[-1,0)uu[(3)/(2),oo) d.R-{0,-1}

Q.The set of all the solutions of the inequality log_(1-x)(x-2)>=-1 is (A)(-oo,0)(B)(2,oo)(C)(-oo,1)

Solution set of the inequality sin^(-1)((sin(2x^(2)+3))/(x^(2)+1))<=pi-(5)/(2) is-a.(-oo,1)uu(1,oo) b.[-1,1] c.(-1,1) d.(-oo,-1]uu[1,oo)