Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `ax^2 + bx+c=0 and S_n= alpha^n + beta^n,` then a `S_(n+1)+c S_n-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n , show that aS_(n+1)+bS_n+cS_(n-1)=0 and hence find S_5

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and A_(n)=alpha^(n)+beta^(n) , then aA_(n+2)+bA_(n+1)+cA+(n) is equal to