Home
Class 11
MATHS
If x=(log)(2a)a , y=(log)(3a)2a ,z=(log)...

If `x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a` ,prove that `1+x y z=2y z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If x=(log)(2)/(3),y=(log)(3)/(5) and z=(log)(5)/(2) show that x+y+z=0 and z=(log)(5)/(2)

If log_(2a)a=X,log_(3a)2a=y, and log_(4a)3a= z,then xyz-2yz is equal to

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If (log x)/(q-r)=(log y)/(r-p)=(log z)/(p-q) prove that x^(q+r)*y^(r+p)*z^(p+q)=x^(p)*y^(q).z^(r)