Home
Class 12
MATHS
Let x > 1,y >1 and (In x)^2+(In y)^2=In ...

Let `x > 1,y >1 and (In x)^2+(In y)^2=In x^2+In y^2,`, then find the maximum value of xln y.

Promotional Banner

Similar Questions

Explore conceptually related problems

if 2x+y=1 then find the maximum value of x^(2)y

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.