Home
Class 12
MATHS
The differential coefficient of tan^(- ...

The differential coefficient of `tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

d/(dx){Cot^(-1)""(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}

Differentiate (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))