Home
Class 12
MATHS
If y=(2x)/(x^4+x^2+1) and y100 is 100th ...

If `y=(2x)/(x^4+x^2+1) and y_100` is 100th derivative of y and `y_100= 1/(omega^2-omega)[(100!)/((x+omega)^101)-(100!)/((x+omega^2)^101)]-1/(omega^2-omega)[(100!)/((x-omega^2)^101)-(100!)/((x-omega)^k)]` then `k-99` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (2-omega^(100))(2-omega^(101))(2-omega^(10))(2-omega^(11))

If omega is the complex cube root of unity, then find omega^99+omega^100+omega^101

If omega!=1 is a cube root of unity,then find the value of ,1+2 omega^(100)+omega^(200),omega^(2),11,1+omega^(100)+2 omega^(200),omegaomega,omega^(2),2+omega^(100)+omega^(200)]|

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

if omega!=1 is cube root of unity and x+y+z!=0(x)/(1+omega),(y)/(omega+omega^(2)),(z)/(omega^(2)+1)(y)/(omega+omega^(2)),(z)/(omega^(2)+1),(x)/(1+omega)(z)/(omega^(2)+1),(x)/(1+omega),(y)/(omega+omega^(2))]|=0 if

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

If omega is a cube root of unit, then Delta=|(x+1,omega, omega^(2)),(omega, x+omega^(2),1),(omega^(2),1,x+omega)|=