Home
Class 11
MATHS
***1." Show that "1^(2)+(1^(2)+2^(2))+(1...

***1." Show that "1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.........." up to "n" terms "=(n(n+1)^(2)(n+2))/(12),AA n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of finite Mathematical Induction prove that 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2)) + "n terms" = (n(n+1)^(2)(n+2))/(12), AA n in N .

show that (3*2^(n+1)+2^(n))/(2^(n+2)-2^(n-1))=2

1^(2)+2^(2)+3^(2)+..........+n^(2)=(n(n+1)(2n+1))/(6)

1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) = (n (n + 1) (2 n + 1))/( 6)

lim_ (n rarr oo) [(1+ (1) / (n ^ (2)))) (1+ (2 ^ (2)) / (n ^ (2))) (1+ (3 ^ (2) ) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Show that 1^3/1+(1^3+2^3)/(1+3)+............n "terms "=n/24(2n^2+9n+13)

Lt_(n rarr oo)[(1)/(n)+(1)/(sqrt(n^(2) -1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+... "to n terms"]