Home
Class 12
MATHS
" If "y=x sin^(-1)x+sqrt(1-x^(2))" .then...

" If "y=x sin^(-1)x+sqrt(1-x^(2))" .then prove that "(dy)/(dx)=sin^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=