cos^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

If the determinant |(cos2x, sin^2x,cos4x),(sin^2x , cos2x,cos^2x),(cos4x,cos^2x,cos2x)| is expanded in powers of sinx , then the constant term in the expansion is :

Compute the following: [[cos^2x, sin^2x],[sin^2x, cos^2x]]+[[sin^2x, cos^2x],[cos^2x, sin^2x]]

Compute the following: : [[cos^2x,sin^2x],[sin^2x,cos^2x]] + [[sin^2x,cos^2x],[cos^2x,sin^2x]]

Evaluate the following integrals: int(2cos^2x-cos2x)/(cos^2x) dx

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

If sin x=cos ^2x then the value of cos^2x(1+cos^2x) will be

Find the maximum value of abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))

Evaluate : (i) int (cos2x+2sin^2x)/(sin^2x)dx (ii) int(2cos^2x-cos2x)/(cos^2x)dx