Home
Class 12
MATHS
15*sqrt((1+sin x)/(1-sin x))...

15*sqrt((1+sin x)/(1-sin x))

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x in [-2 pi,2 pi], for which the graph of the function y=sqrt((1+sin x)/(1-sin x))-sec x and y=-sqrt((1-sin x)/(1+sin x)) coincide are

(d)/(dx ) {sqrt((1+sin x )/(1-sin x ))}=

Derivative of y=(sqrt((1-sin x)/(1+sin x))) is

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))