Home
Class 11
MATHS
LAERCISE (-2)g(x)atCOS X1.Let f(x) =wher...

LAERCISE (-2)g(x)atCOS X1.Let f(x) =where g(x) = ((1+ sint?) dt. Also h(x) = |xl and 1(x)= x² sin – if x #0and (0) = 0 then fequals(A) l'(0)(B) h' (0-)(C) h'(04)(D) Lim1-COS Xxsin xx

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_0^g(x) dt/sqrt(1+t^2) where g(x) =int_0^cosx (1+sint^2) dt. Also h(x) =e^(-|x|) and l(x)=x^2 sin(1/x) if x != 0 and l(0)=0 then f'(pi/2) equals:

Let f(x)=int_(0)^(g(x))(dx)/(sqrt(1+t^(2))) where g(x)=int_(0)^(cos x)(1+sin t^(2))dt. Also h(x)=e^(-|x|) and l(x)=x^(2)sin((1)/(x)) if x!=0 and l(0) then f'((pi)/(2)) equals

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

Let F(x) = f(x).g(x).h(x) x in R , where f(x) , g(x) & h(x) are differentiable function. At some point x_0, F'(x_0) = 21 F(x_0) , f'(x_0) = 4f(x_0),g'(x_0) = -7g(x_0), h'(x_0)= k.h(x_0) then k/4 =

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to: