Home
Class 14
MATHS
lim(x rarr 0) (a^x-b^x)/x=...

`lim_(x rarr 0) (a^x-b^x)/x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (a^(x)-b^(x))/(e^(x)-1) =

lim_(x rarr0)(a^(x)-b^(x))/(x)=log_(e)((a)/(b))

Given that lim_(x rarr 0) (a^x - 1)/x = log a and lim_(x rarr 0) (tan x)/x = 1 Evaluate lim_(x rarr 0) (2^x - 1)/x

Given that lim_(x rarr 0) (a^x - 1)/x = log a and lim_(x rarr 0) (tan x)/x = 1 Evaluate lim_(x rarr 0) (5^x - 1)/x

Evaluate lim_(x rarr0)((a^(x)-b^(x))/(x))

lim_(x rarr0)(a^(x)-b^(x))/(sin x)

lim_(x rarr0)(a^(x)-b^(x))/(c^(x)-d^(x))

lim_(x rarr 0) (1+ax)^(b/x)=

lim_(x rarr 0) (3^(x)-2^(x))/x=