Home
Class 9
MATHS
" (iv) "2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x)...

" (iv) "2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x)) .

If f(x)=(1)/(x^(2)+4x+4)-(4)/(x^(4)+4x^(3)+4x^(2))+(4)/(x^(3)+2x^(2)) the f (1/2) is equal to

Evaluate: lim_(x rarr oo) (x^(5)+3x^(4)-4x^(3)-3x^(2)+2x+1)/(2x^(5)+4x^(2)-9x+16) .

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

((6x^(4)+8x^(3)+27x^(2)+7)/(3x^(2)+4x+1))

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

4x-7-(x+4)=3x+4-(2x-1)