Home
Class 11
MATHS
The inequality sqrt(x^((log)2sqrt(x)))ge...

The inequality `sqrt(x^((log)_2sqrt(x)))geq2` is satisfied by (A) only one value of `x` (B) `x in (0,(1/4)]` `(C) x in [4,oo)` (d) `x in (1,2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

The value of x satisfying sqrt3^(-4+2log_(sqrt5)x)= 1//9 is

If log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0, what is the value of x? a.2 c.3 c.4 d.5

If y=log sqrt(tan x), then the value of (dy)/(dx) at x=(pi)/(4) is given by oo(b)1(c)0(d)(1)/(2)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)

Evaluate int sqrt(x^(2)+1)(log(x^(2)+1)-2log x)/(x^(4))dx

The solution of the inequality (log)_((1)/(2)sin^(-1)x>(log))1/x in((0,1)/(sqrt(2)))(d) none of these x in[(1)/(sqrt(2)),1]x in((0,1)/(sqrt(2)))(d) none of these

f(x)=2x-tan^(-1)x-log{x+sqrt(x^(2)+1)} is monotonically increasing when (a) x>0 (b) x<0( c) x in R( d ) x in R-{0}