Home
Class 12
MATHS
" If "y=sin^(-1)x," prove that "(d^(2)y)...

" If "y=sin^(-1)x," prove that "(d^(2)y)/(dx^(2))=(x)/((1-x^(2))^((3)/(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x, show that (d^(2)y)/(dx^(2))=(1)/((1-x^(2))^(3/2))

If y=sin(tan^(-1)2x), prove that (dy)/(dx)=(2)/((1+4x^(2))^((3)/(2)))

If y=sin^(-1)x , show that (d^2y)/(dx^2)=x/((1-x^2)^(3//2))

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0

If y=tan X+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y=tan x+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))