Home
Class 11
MATHS
The value of (6a^((log)e b)((log)(a^2)b)...

The value of `(6a^((log)_e b)((log)_(a^2)b)((log)_(b^2)a)/(e^((log)_e a(log)_e b))i s` independent of `a` (b) independent of `b` dependent on `a` (d) dependent on `b`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

The value of a^(("log"_(b)("log"_(b)x))/("log"_(b) a)) , is

The value of (log_(a)(log_(b)a))/(log_(b)(log_(a)b)) is

the value of a^(log((b)/(c)))*b^(log((c)/(a)))c^(log((a)/(b)))

The value of ("log"_(a)("log"_(b)a))/("log"_(b)("log"_(a)b)) , is

The value of log_(b)a+log_(b^(2))a^(2) + log_(b^(3))a^(3) + ... + log_(b^(n))a^(n)

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

log_(e^(2))^(a^(b))*log_(a^(3))^(b^(c))log_(b^(4))^(e^(a))

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

If log_e(1/(2)(a+b))=1/2(log_e a+log_e b), then a/(3b) =