Home
Class 12
MATHS
x^(log(10)x)=100x...

x^(log_(10)x)=100x

Promotional Banner

Similar Questions

Explore conceptually related problems

Product of all the solution of equation x^(log_(10)x)=(100+2^(sqrt(log_(2)3))-3^(sqrt(log_(3)2)))x is

Product of all the solution of equation x^(log_(10)x)=(100+2^(sqrt(log_(2)3))-3sqrt(log_(3)2))x is

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

Solve (x+1)^(log_(10)(x+1))=100(x+1)

If (x+1)^(log_(10)(x+1))=100(x+1), then all the roots are positive real numbers all the roots lie in the interval (0,100) all the roots lie in the interval [-1,99] none of these

x^(3log_(10)^(3)x)-(2)/(3)log_(10)x=100(10)^((3)/(2))

(x+1)^(log(x+1))=100(x+1)(base'is'10)

Solve (x+1)^(log_(10) (x+1))=100(x+1)

Solve (x+1)^(log_(10) (x+1))=100(x+1)