Home
Class 12
MATHS
If A=1+r^2+r^(2a)+...oo=a and B=1+r^b+r^...

If `A=1+r^2+r^(2a)+...oo=a` and `B=1+r^b+r^(2b)+...oo=b` then `a/b` is equal to

A

`log_B A`

B

`log_(1-B) (1-A)`

C

`log_((B-1)/B) ((A-1)/A)`

D

`log_(1+B) (1+A)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)), then (3a)/b is equal to _____

If A=1+r^(a)+r^(2a)+ to oo andB=1+r^(b)+r^(2b)+oo, prove that r=((A-1)/(A))^(1/a)=((B-1)/(B))^(1/b)

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then a : b is equal to

sum _(r =1) ^(oo) (1+a+a^(2)+... +a^(r-1))/(r!) is equal to

In a triangle , if r_(1) = 2r_(2) = 3r_(3) , then a/b + b/c + c/a is equal to

y = b- (b)/(r)+(b)/(r^(2)) -... oo