Home
Class 12
MATHS
The following consecutive terms (1)/(1+s...

The following consecutive terms `(1)/(1+sqrt(x)),(1)/(1-x),(1)/(1-sqrt(x))` of a series are in

A

H.P.

B

G.P

C

A.P.

D

A.P., G.P.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The consecutive numbers (1)/(1+sqrt(n)),(1)/(1-n),(1)/(1-sqrt(n)) of a series are in :

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

-int(1)/(sqrt(1-x)+sqrt(1+x))(-(1)/(2sqrt(1-x))+(1)/(2sqrt(1+x)))xdx

Solve (sqrt(x)+1+sqrt(x)-1)/(sqrt(x)+1-sqrt(x)-1)

sqrt(x+1)+sqrt(x-1)=1

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

Evaluate the following: (sqrt(x+1)+sqrt(x-1))^(6)+(sqrt(x+1)-sqrt(x-1))^(6)