Home
Class 12
MATHS
if Sn=sum(r=1)^n (1+2+2^2..........r ter...

if `S_n=sum_(r=1)^n (1+2+2^2..........r terms )/(2^r)` then `S_n` is equal to

A

2n-(n+1)

B

`1-1/2^n`

C

`n-1+1/2^n`

D

`1+1/2^n`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

if S_(n)=sum_(r=1)^(n)(1+2+2^(2)......... rterms )/(2^(r)) then S_(n) is equal to

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+......+2^(r))/(2^(r)), then S_(n) is equal to (a)2^(n)n-1( b) 1-(1)/(2^(n))(c)2n-1+(1)/(2^(n))(d)2^(n)-1

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+2^(3)+.... rterms )/(2^(r)) then S_(-)n is equal to

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to